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of all such intensities to be used in modelling. Only 37 
independent peaks in the same plane as the diffuse 
scattering were used in .this preliminary work. The 
RMCX algorithm was essentially unchanged, but two 
goodness-of-fit parameters were calculated, one for 
Bragg and one for diffuse scattering, and these were 
then added with a scaling factor ~, such that 

~otal = X~ff~ + ]TRw. (A 1) 

2 Xdiff~ is given by equation (4) of the main text, whilst 
the weighted R factor, R w, used for Bragg scattering is 
defmed by 

. . :  {m ' } 

In this expression, I e (Qm) is the normalized experimental 
integrated intensity of the ruth Bragg peak and I c (Qm) its 
calculated counterpart, o-e(Qm) is the corresponding 
experimental error. To fit both types of data well it was 
necessary initially to make the scaling factor ¢1 very 
large, so that a very good fit to the Bragg scattering was 
obtained (R w of the order 10-4)./~ was then decreased in 
stages, with convergence achieved at each stage. It is 
hence a very computationally expensive procedure. 

Fig. 6 shows the experimental diffuse scattering from 
SXD for lead at 293 K, together with the RMCX fit. The 
agreement is good considering the poor statistics and 
large systematic errors in the data. (The systematic errors 
arose largely because the measurement was made with a 
small position-sensitive detector and the exact sample 
angle for each detector position is not known so that the 
joining of different segments of data could not be done 
with sufficient accuracy.) Good agreement was also 
obtained with the Bragg intensities, with a weighted R 

factor of 0.05, close to the 0.03 obtained by refinement of 
the Bragg peaks alone. The mean square displacements 
in the two cases were also in reasonable agreement, with 
a value of 0.029(3)J, 2 in the present study and 
0.024 (1)~t 2 from analysis solely of the Bragg intensities. 
This gives encouragement that Bragg and diffuse 
scattering can be fitted simultaneously. Work on 
optimizing the algorithm is continuing. 
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Abstract 
X-ray diffraction patterns from some polycrystalline 
fibers show that the constituent microcrystallites are 
disordered. The relationship between the crystal structure 

* To whom all correspondence should be addressed. 

©1995 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

and the diffracted intensities is then quite complicated 
and depends on the precise kind and degree of dis- 
order present. The effects of disorder on diffracted 
intensities must be included in structure determinations 
using diffraction data from such specimens. Theory 
and algorithms are developed here that allow the full 
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diffraction pattern to be calculated for a disordered 
polycrystalline fiber made up of helical molecules. The 
model accommodates various kinds of disorder and in- 
cludes the effects of finite crystallite size and cylindrical 
averaging of the diffracted intensities from a fiber. Simu- 
lations using these methods show how different kinds, 
or components, of disorder produce particular diffraction 
effects. General properties of disordered arrays of helical 
molecules and their effects on diffraction patterns are 
described. Implications for structure determination are 
discussed. 

1. Introduction 
._ 

X-ray fiber diffraction analysis is used to determine the 
molecular and crystal structures of polymers and rod- 
like macromolecular assemblies that can be prepared as 
oriented fibers or as rotationally disordered planar arrays 
(Amott, 1980; Millane, 1988). The degree of order in 
these specimens varies greatly, as evidenced by the var- 
iety of diffraction patterns they give. In a non-crystalline 
fiber, the diffracting particles are oriented with their long 
axes approximately parallel but are randomly positioned 
and randomly rotated about these axes. The diffraction 
pattern is free from interparticle interference effects and 
shows continuous intensity, distributed on layer lines, 
that is equal to the cylindrical average of the intensity 
diffracted from a single molecule. In a polycrystalline 
fiber, the molecules form small well ordered crystallites 
that are randomly rotated about the long axes of the 
constituent molecules. The diffraction pattern consists of 
discrete Bragg reflections and is equivalent to the cylin- 
drical projection of the diffraction pattern from a single 
crystal. It is, therefore, straightforward to calculate the 
intensity diffracted by non-crystalline and polycrystalline 
fiber specimens. Such a calculation is a necessary ingre- 
dient in structure determination. Diffraction data from 
polycrystalline specimens has been used to determine a 
wide range of polynucleotide, polysaccharide and syn- 
thetic polymer structures (Arnott, 1980; Millane, 1988). 
Data from non-crystalline specimens has also been used 
to determine the structures of some molecules (Namba & 
Stubbs, 1985; Millane, Chandrasekaran, Arnott & Dea, 
1988). 

It is not uncommon, however, for fibers to give 
diffraction patterns that display both sharp reflections 
and continuous intensity on layer lines (Miller & Parry, 
1974; Arnott, 1980), indicating that the packing of 
the constituent molecules is neither ideally crystalline 
nor ideally non-crystalline. The sharp reflections are 
either confined to the center of the pattern and give 
way to continuous intensity at the periphery, as in 
the example shown in Fig. 1, or are dispersed across 
the pattern with intervening diffuse layer-line streaks. 
Fibers giving these kinds of pattern include those of 
C-DNA (Marvin, Spencer, Wilkins & Hamilton, 1961), 

the high-humidity c~ forms of synthetic polynucleotides 
(Amott, Chandrasekaran, Millane & Park, 1986; Park, 
Arnott, Chandrasekaran, Millane & Campagnari, 1987), 
triple-stranded polynucleotides (Arnott & Bond, 1973), 
collagen (Fraser & MacRae, 1987), keratin (Fraser, 
MacRae, Parry & Suzuki, 1969), xanthan (Okuyama, 
Amott, Moorhouse, Walkinshaw, Atkins & Wolf-Ullish, 
1980), some polypeptides (Amott, Dover & Elliot, 1967; 
Arnott & Dover, 1967; Inouye, Fraser & Kirschner, 
1993) and ~-carrageenan (Amott, Scott, Rees & McNab, 
1974). A mixture of Bragg and continuous intensity 
in a diffraction pattern can result from a mixture of 
crystalline and non-crystalline material (Miller & Parry, 
1974) but in many cases it results from imperfect, 
or disordered, crystalline packing of the molecules in 
a fiber. Diffraction patterns containing Bragg reflec- 
tions at low resolution and continuous intensity at high 
resolution have been used to determine several polynu- 
cleotide structures (Arnott, Chandrasekaran, Millane & 
Park, 1986; Park, Amott, Chandrasekaran, Millane & 
Campagnari, 1987) by co-refining molecular and crystal 
structures against the continuous and Bragg diffraction. 
Such an analysis is only approximately valid at best, 
since it ignores the effects of disorder on the diffracted 
intensities. Modeling disorder in polycrystalline fibers, 
and quantifying its effect on diffraction, is necessary 
for accurate structure determination using these kinds of 
patterns. Furthermore, identifying the kinds of disorder 
in a fiber may be important in its own right with regard 
to its relevance to the structure-function relationships of 
the molecules and the aggregates they form (Miller & 
Parry, 1974). 

t /  1~  " " 4  , ..~ 

Fig. 1. Fiber diffraction pattern from poly(dA).poly(rU) (Amott, 
Chandrasekaran, Millane & Park, 1986). 
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The diffraction patterns we consider show little evi- 
dence of peak broadening with increasing resolution, 
indicating that the disorder is, to a good approximation, 
'uncorrelated' (Hosemann & Bagchi, 1962; Welberry, 
1985). This means that the distortions at one lattice 
site are independent of the distortions at other sites. 
The model we develop is therefore one of uncorrelated 
disorder (sometimeS referred to as 'disorder of the first 
kind'). Several models of disorder in fibers incorporating 
rotations and axial translations of the molecules in each 
crystallite have appeared in the literature. Clark & Muus 
(1962) derive equations for the Bragg intensity diffracted 
from a fiber with this kind of disorder, for the case where 
only one Bessel order contributes to the intensity on each 
layer line. Tanaka & Naya (1969) develop the same 
model of disorder in more detail, deriving equations 
for both the Bragg and continuous intensity, while also 
considering the effects of random chain direction. Arnott 
(1980) does likewise but omits cylindrical averaging 
from the analysis. Each of these analyses is incomplete in 
some respect; none of them include the effects of lateral 
displacements of the molecules (which we show to be 
important) nor do they provide results that can be applied 
for computing the effects of disorder on diffraction 
patterns in detail. Vainshtein (1966, ch. V, equation 
133) derives a general equation for diffraction from a 
fiber but does not complete its detailed development for 
the types of disorder considered here. His analysis of 
disorder is primarily concerned with the effects of ideal 
paracrystalline lattice distortions (Hosemann & Bagchi, 
1962). 

The advent of methods for accurately measuring con- 
tinuous diffraction data (Fraser, MacRae, Miller & Row- 
lands, 1976; Makowski, 1978; Millane & Arnott, 1986) 
affords the possibility of a more detailed consideration of 
the effects of disorder in structure determination. Here, 
we extend earlier models of disordered polycrystalline 
fibers by including the lattice distortions that accompany 
other forms of disorder and derive equations that permit 
the complete distribution of intensity diffracted from 
model fibers to be calculated. Some aspects of our model 
have been described in a previous report (Millane & 
Stroud, 1991) but the analysis of the model presented 
here is considerably more detailed. The effects of the 
types of disorder generally thought to be present in 
fibers are examined in detail by calculation of diffraction 
patterns. 

2. Preliminaries 
/ 

2.1. Diffraction from a helical molecule 

The complex amplitude, Fz(R, ¢), diffracted by a 
molecule with uv helix symmetry (u  repeat units and v 
turns of the molecular helix in one c repeat) and infinite 
length, is restricted to the planes Z = 1/c of reciprocal 
space and is given by (Cochran, Crick & Vand, 1952; 

Klug, Crick & Wyckoff, 1958) 

F t ( R , ¢ ) =  F ( R , ¢ , Z = I / c )  
= Y~ Gnt(R)exp[in(¢ + ~-/2)], (1) 

n 

where (R ,¢ ,  Z) are cylindrical polar coordinates in 
reciprocal space. The Fourier-Bessel structure factors, 
Gnt(R ), are defined as 

G.t(R) = E fj(p)J.(27rrjR)exp[i(27rzjl/c - nqoj)], 
J 

(2) 

where p is the length of the reciprocal-space position 
vector (R, ¢, g) ,  Jr,(X) is the nth-order Bessel function 
of the first kind, the sum over j is over all atoms in the 
repeat unit, and fj(p) is the scattering factor of the j th  
atom with cylindrical polar coordinates (rj, ~j, Zj). The 
summation in (1) is over all Bessel orders satisfying the 
helix selection rule 

1 = u m  + vn, (3) 

where m is any integer. For each layer-line index l, 
the selection rule has an infinite number of solutions n. 
However, the behavior of Bessel functions is such that 
for a molecule with maximum radius rmax only those 
Gnz(R) for which 

Inl <~ nmax = 27rrmaxR n t- 2 (4) 

are significant at radius R (Crowther, DeRosier & Klug, 
1970; Makowski, 1982). 

As a result of cylindrical averaging, the layer-line 
intensities diffracted from an ideal non-crystalline fiber 
are given by (Franklin & Klug, 1955) 

271" 

I t (R )  = ( 1 / 2 7 r ) f l F ~ ( R , ¢ ) l  2 de = E ICn,(R)l 2. (5) 
0 n 

The layer-line intensities diffracted from a polycrys- 
talline fiber consist of sharp Bragg reflections and are 
given by 

27~ 

Iz(R ) - (1/27r) f Icryst~nite(R,¢,I/c) d¢, (6) 
0 

where Icrystallite(R,~, I/c) is the Bragg intensity dif- 
fracted from a representative crystallite. 

2.2. Disorder 

A review of the various models of diffraction by dis- 
ordered systems (Welberry, 1985) shows that, regardless 
of the type of material for which they are specifically 
developed, they are founded on similar concepts and 
assumptions. It is generally assumed that materials that 
give diffraction patterns containing some sharp peaks are 
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crystalline on average but contain defects that interrupt 
the regularity of the crystal structure. These defects 
could be studied by directly modeling the interactions 
between the constituent units of a crystal, generating 
representative model crystals into which various defects 
have been introduced and calculating their diffraction 
patterns. However, results obtained by this approach 
depend critically on the accuracy of the interaction 
parameters used. In addition, the computational cost 
of generating ensembles of disordered crystallites is 
prohibitive in many cases. To date, this approach has 
been used to study disorder in polycrystalline fibers only 
on a very local scale (Rutledge & Suter, 1991). The 
approach we adopt for identifying and characterizing 
disorder in a specimen involves construction of statistical 
models of disordered crystallites and comparison of the 
resulting diffraction patterns with measured diffraction 
patterns. Disorder is described in terms of perturbations 
away from ideal three-dimensional crystalline order, 
and probability density functions characterizing these 
perturbations are defined. The average diffraction calcu- 
lated over an ensemble of imperfect crystallites is then 
identified with the diffraction from a fiber. It is assumed 
that the statistics of the perturbations are stationary, 
i.e. invariant of position, a necessary assumption if the 
intensity diffracted from a crystal is to be calculated 
other than by a direct Fourier summation over every 
site of the crystal lattice. 

It is convenient to regard disorder as having two 
related components, referred to here as lattice disorder 
and substitution disorder. Provided the crystal structure 
is not disrupted, it can be assumed that, on average, the 
molecules are located at the sites of a regular lattice. Lat- 
tice disorder consists only of deviations in the positions 
of the molecules from the average lattice. Disorder in 
the systems we are considering, however, also involves 
variations in the orientations of the molecules. This 
is not encompassed by lattice disorder but rather by 
substitution disorder. Substitution disorder consists of 
variations in the kinds of units at each lattice site or, 
since a single molecule in different orientations may be 
considered to be different molecules, variations in the 
orientation. Lattice disorder could also be considered 
as a component of substitution disorder but this is not 
generally done as the diffraction effects of the former 
are easier to describe than those of the latter. 

Variations in the orientations of a molecule will gen- 
erally affect the positions of neighboring molecules so 
that substitution disorder can generally be thought of as 
a source of lattice disorder. When disorder is confined 
to one dimension, as it is in the case of layered crystals 
(Hendricks & Teller, 1942; Wilson, 1942), or when the 
constituent units of a crystal are relatively simple, as 
they are in binary alloys (Cowley, 1968), the relationship 
between lattice distortion and substitution disorder can 
be specified. Otherwise, it is difficult to relate distor- 
tions of the lattice to variations in the orientations of 

the molecules, so that substitution disorder and lattice 
distortions must be treated as independent. This approach 
is adopted here. 

3. Theory 

The diffraction pattern from a polycrystalline fiber is 
dominated by the intensity diffracted from the crystalline 
domains, and is ideally confined to discrete layer lines. 
Intensity diffracted from amorphous material in the fiber 
contributes to a diffuse, approximately isotropic, back- 
ground intensity that is generally modeled and subtracted 
from a diffraction pattern prior to the measurement 
of Bragg or continuous layer-line intensities (Millane 
& Amott, 1985). For the purpose of calculating these 
intensities, a polycrystalline fiber can be modeled as a 
statistical ensemble of independent crystallites formed 
from the helical molecules. The crystallites are randomly 
positioned relative to each other and oriented so that 
their crystallographic c axes (chosen parallel to the helix 
axes of the molecules) are approximately parallel and 
randomly rotated about the c axis. The ensemble is 
then characterized by the lateral sizes and shapes of the 
crystallites and the statistics of the disorder within them. 

We restrict our attention to specimens where the 
average crystalline structure has a monoclinic cell with 
one molecule per unit cell and with the c axis being 
the unique axis. This accommodates most polycrystalline 
fibers of biopolymers. In the absence of lattice disorder, 
the helix axes of the molecules intersect the lateral 
plane at the sites of a two-dimensional periodic lattice 
generated from the unit-cell vectors a and b. Lattice 
disorder is described here in terms of distortions of 
this lattice in three-dimensional space. The molecules 
are treated as rigid bodies, and substitution disorder 
as consisting of rotations about and translations along 
the helix axes and variations in the direction ( 'up' or 
'down') of the molecules. The structural periodicity of 
the molecules in the axial direction remains, so that the 
diffracted intensity is confined to layer lines, as it is for 
the case of no disorder. 

To derive expressions for the layer-line intensities 
diffracted from a fiber, we model the molecules in 
the crystallites as having infinite length and ignore 
the effects of disorientation. The resulting layer-line 
intensities can be corrected for these effects subse- 
quently, as described in a later section. Without these 
corrections, the ensemble of crystallites representing the 
fiber diffracts layer-line intensities l t (R) given by 

I t (R ) = (((I(R,  g,,Z = I/C))d)s)~,, (7) 

where I (R,  g,, Z) is the intensity diffracted from a single 
crystallite, c is the axial repeat distance of the molecules, 
( )d denotes averaging over all states of disorder, ( )s 
denotes averaging over all cross-sectional sizes and 
shapes of the crystallites in a plane perpendicular to the 
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fiber axis and ( )¢ denotes cylindrical averaging arising 
from the random rotations of the crystallites about their 
c axes. Equation (7) is the analog of equation (6) for a 
disordered fiber. Our goal is to evaluate the right-hand- 
side of (7) for a particular model of disorder. 

3.1. General formulation 
The molecules in a crystallite are displaced from the 

sites of the two-dimensional periodic lattice 

rfl¢ = j a  + kb (8) 

by the displacement vectors djk, where rjk and djk 
are vectors in three-dimensional space. For an ensemble 
of crystallites with identical orientations, the average 
diffracted intensity can be written as 

( I ( a ) ) a  = E E E E (  81at(rjk)Slat(rjtk ') 
j j '  k k'  

x Fjk(R)F;,k,(R ) 
x exp[i27rR. (rjk + djk)] 

x exp[- i27rR.  (rj, k, + dj,k,)])a, (9) 

where R is the position vector in reciprocal space, 
Fjk(R) are complex amplitudes diffracted by the 
molecules, * denotes the complex conjugate and sl~t(r) 
is the shape function describing the lateral cross section 
of the crystallite, equal to 1 inside the crystallite and 
0 elsewhere. 

As a result of substitution disorder, the structure 
factors Fjk(R) differ between molecules. If lattice and 
substitution disorder are independent, 

(Fjk(R)F~*,k,(R) exp[ i2 rR-  (djk - dj,k,)l)d 

= (Fjk(R)F~*,k,(R))a(exp[i2~R. (djk - dj,k,)l)d. 

(10) 

If it is assumed that the statistics for substitution dis- 
order are stationary and that variations in the Fjk are 
uncorrelated, 

<Fjk (R)Fj*/¢, (R)>d 

(IF(R)12)d when j = j '  and k = k', (11) 

t I(F(R))al ~ otherwise. 

If the displacement vectors dj~: (i.e. the lattice distor- 
tions) are uncorrelated and their statistics are stationary 
over the lattice, then 

(exp[i27rR. (djk - dj,k,)l)a = I(exp(i27rR" d))dl 2, 

(12) 

where d is a generic random vector describing the lattice 
distortions. Furthermore, if the displacement vectors are 

normally distributed with zero mean, 

I(exp(iETrR. d))al 2 = exp(-27r2R.CRT), (13) 

where C is the covariance matrix of the random vector 
d and the superscript T denotes transposition (Papoulis, 
1984, p. 115). Substituting (10), (11) and (13) into (9) 
gives 

( I (R))  d = N{  (IF(R)I2)a -I(F(R))dl2Wlattic~(R)} 

+ I(F(R))dl2Wlattice(a)Z(R), (14) 

where N is the number of molecules in each crystallite, 

? /31a t t i ce (R ) - -  exp( -47r2RCR T) (15) 

is the weighting due to lattice disorder and 

Z ( R )  = lY'] ~ Slat(rjk)exp(i27rR. rjk ) (16) 
i j  k 

is the interference function of the average lattice. The 
first two terms in (14) describe diffuse or continuous 
intensity, while the third term describes a set of Bragg 
reflections. Since the covariance matrices of random vec- 
tors with zero mean are non-negative definite (Papoulis, 
1984, p. 179), Wlattice(R) _< 1 and Wlattice(R) ~ 0 for 
IRI ~ c¢, so that the lattice disorder weight suppresses 
the Bragg intensities with increasing R. It also tends to 
enhance the diffuse intensity with increasing R. 

The cylindrically averaged layer-line intensities, 
It (R), diffracted from a fiber are obtained by substituting 
(14) into (7) and may be expressed as 

It(R ) = I f ( R )  + I f (R ) ,  (17) 

where the diffuse intensity, ID(R), is 

ID(R) = (N)s(  ((lFt(R, ¢ll2)a)~ 

- (wl~tti~e(R, ¢,I/c)I(Fz(R, ¢))d12)¢ ) ,  

(18) 

the Bragg intensity, IF(R ), is 

IIB(R) -- (Wlattice(R, ~b,1/c) I(FL(R, ¢))dI2(Z(R))s)¢ 
(19) 

and the structure factors Ft(R, ~,) are given by (1). 

3.2. Lattice disorder 
The elements of the covariance matrix C determine 

how the lattice disorder weight varies with ~b. To 
simplify evaluation of the cylindrical averages in (18) 
and (19), we assume that the Cartesian components 
(d x, d y, d z) of each distortion vector vary independently 
of one another and that the variances of the lateral 
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components d x and d u are equal. We define the lateral 
and axial variances O-~at and 2 O-axial as 

O-~at----((dX) 2) = <(d~) 2) 

so that 

and aaxia , 2  = <(dZ)2), 

(20) 

[o-?at 0 0 ) 
C ~-~ ~ 0 O-~at0 Z0 

O'axia 1 
(21) 

and the corresponding lattice disorder weight is 

Wlattice(n, ¢ ,  Z )  -- Wlattice(R , Z )  
2 2 = exp[-4 2(n o- at + Z 

(22) 

This is independent of fly and can be removed from the 
cylindrical averages in (18) and (19). From (18) and (19), 
the effect of this weight is to suppress Bragg intensity 
with increasing R and Z, which is accompanied by an 
increase in diffuse intensity. 

3.3. The interference function 

Using the convolution property of Fourier transforms, 
one can write the interference function (16) as 

Z ( R )  = ISlat(R) ® L(R)  2, (23) 

where ® denotes convolution, Slat(R) is the Fourier 
transform of Slat(r) and L(R)  is the reciprocal-lattice 
function 

L(R)  = (1/Acen) • E 6 ( R -  Rhk ), (24) 
h k 

where Ace,, is the cross-sectional area of the unit cell 
and Rhk are the sites of the two-dimensional lattice 
reciprocal to (8). Substituting (24) into (23) gives 

Z ( R )  = (1 2 /A~ell) E E IS, at( R - Rhk)l 2 
h k 

-k- (1/A2en) E E  E E S l a t ( R -  Rhk) 
h k h'Tkh k'ykk 

× SI* t (R  - Rh,  k, ). (25) 

For crystaUites spanning more than a few unit cells in 
any direction, Slat(R) is sharply peaked at the origin 
and is small for all reciprocal distances of the order of 
one reciprocal-lattice spacing or greater. Consequently, 
the second term in (25) is small everywhere so that 

Z ( R )  ~_ (1/A~Zen) E E ]S l a t (R-  Rhk)l 2 
h k 

= ( 1 / A c e , , ) [ L ( R )  ® IS,at(rt)12]. (26) 

Ino & Minami (1979) have shown that (26) is exact, 

regardless of crystallite size, when both sides of the 
equation are averaged over all shifts of the shape func- 
tion relative to the crystal lattice. Using (26) when 
calculating diffracted intensities has, therefore, the de- 
sirable effect of effectively averaging the intensity over 
those shifts that occur in a specimen. 

For the crystallite sizes usually present in fibers, 
the interference function is significant only over small 
regions centered on the points (Rhk, flyhk). The structure 
factors Ft(R, fly) are approximately constant over these 
regions and equal to Ft(Rhk, flyhk) = Fhkz. From (19) 
and (26), the intensity due only to the hkl Bragg 
reflection is approximately 

IBkt(R) = (1/Acen)Wlattice(Rhk, Z/c)](Fhkt)d127)hk(R), 
(27) 

where T'hk (R) is the radial profile of the reflection given 
by 

27r 
7Phk(R) ---- (1/27r) f <]Slat(R - Rhk  , ¢ -- flyhk)[2)s dry. 

0 
(28) 

The lateral shape function Slat(r) determines the 
reflection profiles 79hk(R) and the relative magnitudes 
of the Bragg and continuous intensities. In order to 
calculate the complete distribution of intensity along 
a layer line, one must, therefore, choose a form for 
this function. For the purpose of exploring the effects 
of disorder, we assume that the crystallites are all the 
same size and are circular in cross section. The Fourier 
transform of the circular shape function 

1 Irl _< rc 
81at(r) = 0 Irl > r c 

(29) 

is 

Slat(R ) -- rc[Jl(27rr~R)/R], (30) 

where rc is the radius of the crystallite. When (30) is 
substituted into (28), ( 18 is eliminated and the value of 
the integrand depends only on the distance 

R' = R 2 -q- R2hk -- 2RRhk COS(fly -- Chk), (31) 

so that 

27r 
7)hk(R) = (r~/27r) f J?(27rrc[R 2 + R2hk 

0 

-- 2 R R h k  cos(fly - Chk)] 1/2) 

× [R 2 + R2hk -- 2RRhk cos(fly -- flyhk)] -1 de.  

(32) 

The integral in (32) cannot be solved analytically other 
than for meridional reflections. A good approximation 
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can be obtained, however, using a method employed 
by Guiner (1939) and Hosemann & Bagchi (1962) in 
their analyses of reflection profiles. For crystallites of 
moderate size, this gives 

79o0 =Tr 2 re4 exp(_Trgr~R 2) (33) 

for meridional reflections and 

79hk(R) ~_ (r3 r l /2 /2Rhk)  exp[--Tr2r2(R - Rhk) 2] 

(34) 

for non-meridional reflections. 

is the thermal disorder weight and at is the mean squared 
displacement of each atom due to thermal motion, 

I t ( R , Z  ) = N [ 1 -  w t ( n , z ) ]  y]~f2p(n 2 + Z2) 1/2 (37) 
P 

is the diffuse intensity due to thermal disorder and 
( I (R,  Z))a is the intensity diffracted in the absence of 
thermal disorder. Reference to (36) and (37) shows that 
the diffuse intensity due to thermal disorder is distributed 
isotropically throughout reciprocal space. This intensity 
is subtracted out as a component of the background 
intensity, and hence the effect of thermal disorder can be 
modeled by simply multiplying the layer-line intensities 
by the isotropic factor wt(R,  Z).  

3.4. Thermal disorder 

At this point, it is worth considering how a description 
of thermal disorder may be combined with that of 
lattice disorder. The effects of thermal atomic motion 
on diffracted intensities are usually modeled by treating 
each atom as an independent oscillator subject to the 
force field exerted by the dynamically averaged crystal 
environment (Dunitz, Schoemaker & Trueblood, 1988). 
The effective potential often appears to be reasonably 
harmonic and at any instant the thermal displacements 
of equivalent atoms on different molecules are normally 
distributed. Because the formalism used to describe 
thermal disorder and lattice distortions are essentially 
the same, it has often been assumed that the effects of 
the two forms of disorder are indistinguishable (see, for 
example, Fraser & MacRae, 1973, p. 73). The important 
difference between the two components of disorder is 
that lattice distortions involve displacement of each mol- 
ecule as a rigid body, whereas thermal disorder involves, 
at least approximately, independent displacements of the 
individual atoms. Lattice distortions, as modeled here, 
do not disrupt the axial periodicity of each molecule so 
that the diffracted intensity is restricted to layer lines. 
Uncorrelated thermal motions of the individual atoms, 
however, destroy the periodicity of the molecule from 
one instant to the next so that intensity is removed from 
the layer lines and dispersed continuously throughout 
reciprocal space. 

Assuming that all of the atoms in a polymer have iden- 
tical thermal displacement parameters (an assumption 
that is usually made in fiber diffraction analysis since 
the number of data is not adequate to assign thermal 
parameters to individual atoms) and performing a similar 
analysis to that for lattice distortions shows that the 
intensity diffracted when there is thermal disorder is 
given by 

( I ( R , Z ) )  = I t ( R , Z  ) + w t ( R , Z ) ( I ( R , Z ) )  d, (35) 

where 

w t ( R , Z  ) = exp[-47r2a2(R 2 + Z2)] (36) 

3.5. Probability density functions for helical molecules 

Substitution disorder involving rotations qo and axial 
translations z is specified by a probability density p(qo, z) 
defined over all distinguishable states of the helical 
molecules. A helical molecule is periodic in (qo, z) space 
and is invariant under the transformations 

~o I = ~p + 27rklv/u + 2~-k 2 
(38) 

z I = z + k le /u ,  

where kl and k2 are any integers. Using this trans- 
formation pair, any (~o,z) can be mapped into the 
region 

O <_ qo < 27r, O <_ z < c /u  (39) 

and this, therefore, is the region on which p(qo, z) should 
be specified. If, however, distributions for (qo, z) are 
defined on infinite intervals, the implications of the 
periodic nature of the molecule must be considered. 

It is often convenient to define a density function 
p'(~' ,  z ~) for qo' and z ~ taking all real values (a normal 
distribution for example). Many of the states (qd, z ~) then 
correspond to a single state (~, z) satisfying (39). The 
actual density function p(qo, z) of distinguishable states 
is given by 

p(~p,z) = E ~-~p'(qo + 27rklV/U + 27rk2, z + k l c / u  ). 
kx k2 

(40) 

This distribution consists of many copies of the specified 
function ff(~, z) folded, or aliased, back into the region 
of (¢p, z) space given by (39). For a molecule with high 
helix symmetry (u large and v small), the effect of this 
aliasing will be more pronounced than for a molecule 
with low symmetry. For normal distributions, we specify 
p~(~d, z ~) and, provided the variances of ~' and z ' are 
small, the actual distribution p(~o,z) ~' p'(~o,z). If 
the variances are large, however, the actual distribution 
given by (40) can be quite different to p'(~' ,  z~). Specific 
implications of this are described later. 
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3.6. Substitution disorder 

The effects of substitution disorder are expressed 
in (18) and (19) through terms involving the 
averages ((~Ft(R, ~)) [2)d)~b, [ (Ft (R, ¢))d[ 2 and 
(l(F~(R,¢)>dl h0. These effects are expressed here 
using substitution disorder weights calculated from 
the probability densities of the rotations and axial 
displacements of the molecules. Axial translations with 
normal distributions are already included in the model as 
a component of lattice disorder. However, translations 
that are completely random or are coupled to rotations 
are best regarded as components of substitution disorder. 

Using (1) and (2), the complex amplitude diffracted 
by a molecule rotated about its axis through an angle qo 
and translated a distance z along this axis can be written 
in terms of the Gnt (R) of a reference molecule as 

Ft(R, ¢) = exp(i2rzl /c)  
× ~ G,.a(R)exp[in(¢ - qo + 7r/2)]. 

y~ 

(41) 

The cylindrical average ((]Fz(R,¢)I~)d)~ appearing in 
(18) is then 

((IFt(R,C)I2)d)¢ 
= ~ y]{G~t(R)G*t(R)exp[ i (n  - m)Tr/2] 

n m 

× (exp[- i (n  - m)qo])d(exp[i(n - m)¢])¢ }. 

(42) 

The average over ¢ on the right-hand side of (42) 
vanishes unless m = n, so that 

((lEt(R, ¢)lZ)d)¢ = ~ IG,a(R)I 2, (43) 
n 

regardless of how qo and z are distributed. 
The average complex amplitude diffracted by a mol- 

ecule can be written as 

(Ft(R,¢))d = y]~w,.aG.t(R)exp[in(¢ + 7r/2)], (44) 

where w,~t, the substitution disorder weight, is defined as 

c/u 21r 
Wnz = f f p(qo, z )exp[i(27rzl /c-  nqo)]dqodz. (45) 

o o 

For independent rotations and translations of the 
molecules, the probability density function p(qo, z) 
factorizes as 

p(qo, z) = p~,(qo)pz(z), (46) 

so that the disorder weight can be factorized as 

~' ~ (47) W n l  = W n w I , 

where 

and 

271" 

w~ = f p~(qo) exp(-inqo) dqo (48) 
o 

w{ = f pz(z) exp(i27rzl/c) dz. (49) 
o 

Equation (45) gives the substitution disorder weight in 
terms of the density function p(qo, z) of distinguishable 
states. If, instead of p(~, z), a density function p'(qd, z') 
defined on the infinite interval is used to describe substi- 
tution disorder, the corresponding disorder weights are 
obtained by substituting (40) into (45) as 

e/u 27r 
w., = f f EEp ' (~o+ 27rklv/u + 27rk2, z + klein,) 

0 0 ka ks 

× exp[i(2rzl/c - nqo)] dqo dz. (50) 

Using (38) to make a change of variables, one can write 
(50) as 

( k l + l ) c / u  2~rk lv /u+2~r(k2+l )  

w., = E E f f 
k l  k2 k l C / U  27rklV/U.q-27rk2 

x exp[ i (2 r z ' l / c -  nqo')] 

x exp[i27rkl(nv-1)/u]dqo'dz'  } .  (51) 

From the helix selection rule (3), [nv - 1]/u is equal 
to an integer, so that the second exponential in (51) is 
equal to unity. Evaluating the sums gives 

o o  o o  

w~t= f f p'(qo',z')exp[i(27rz'llc-nqo')]dqo'dz', 
-- (X~ --00 

(52) 

which has the same form as (45). The correct disorder 
weights are therefore calculated using (52) when the 
density p'(qo', z') is used. 

It follows from (44) that 

(I(F,(R, ¢))d12>¢ = (1 /27 r )~  ~ { w n ,  w*zG, , (R ) 

x Gmt(R)exp[i(n - m)Tr/2] 
27r 

x f exp[i(n - m)¢] d e }  (53) 
o 

and the integral over ¢ vanishes unless n = m, so that 

(I(Ft(R, ¢))dl2)~ = E IwntlZlG~z(R)l 2" (54) 
n 

Substituting (43) and (54) into (18) gives the diffuse 
intensity as 

Ip(R) = <N)s ~ IG,~,(R)I2[1 -Iw,~tlew,attice(R, llc)], 
n 

(55) 
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while substituting (44) into (27) gives 

IBm(R) (1 2 = /Acell)Wlattice(Rhk, 1/¢ ) 

X ~n wntGnt (Rhk)  

× exp[ in(¢hk  + 71/2)] 279hk(R ) (56) 

for the corresponding Bragg intensity. Equations (55) 
and (56) are the general expressions we seek for diffrac- 
tion from a polycrystalline fiber incorporating lattice and 
substitution disorder. To further evaluate the implications 
of these equations, the weights wnt are calculated for 
specific kinds of disorder. 

3.6.1. Combined disorder. It is sometimes convenient 
to consider disorder as having two or more components, 
each involving rotations and translations that are inde- 
pendent of the rotations and translations of the other 
components. Suppose that two such disorder components 
are described by the density functions pl(qOl, Zl) and 
p2(q02, Z2) with respective weights w (1) and w (2). When 
the two disorders are combined, a molecule has rotations 
qo = cpl + ~P2 and translations z = Zl + z2, where ¢Pl 
is independent of qo2 and Zl is independent of z2. If 
the density functions are defined on the infinite inter- 
val, standard probability theory (Papoulis, 1984, p. 135) 
gives the density function p(qo, z) of the combined 
disorder as 

assigning a normal distribution, with standard deviation 
o-y, to cp. This distribution is aliased by molecular 
symmetry into the interval (0, 27r) in accordance with 
(40). Provided that cr~ << 27r, the effect of aliasing 
is small and the actual distribution of distinguishable 
states is approximately normal. Substituting the normal 
distribution into (48) gives 

w~ = exp(-n2 a2 /2) (60) 

as the weighting due to small rotations. Equations (55), 
(56) and (60) show that the effect of small rotations 
is to suppress the contribution of the higher-order 
Fourier-Bessel coefficients to the Bragg intensity and 
correspondingly to increase the diffuse intensity. 

3.6.3. Random rotations. If the molecules are ran- 
domly rotated, then p~(~p) = (27r) -1 and 

27r 
w~ = (1/27r) f exp(incp) dqv = (5,0, (61) 

0 

where 5ij is the Kronecker delta. Since n = 0 is a 
solution to the helix selection rule only on layer lines 
l = mu, where m is an integer, substituting (61) into 
(55) and (56) gives 

Ip(R)  - <N)s E { I G n z ( R ) I  2 - 6nolGoz(R)l 2 
n 

2 2 x exp[-47r2(R2a~t + Z a~xi~l)]} (62) 

o o  o o  

p(~, z) = f f Pl(qD - ~', z - z')p2(qJ, z') dqo' dz', 
- -  (::X) - - 0 0  

(57) 

i.e. the convolution of the individual density functions. 
Since wnt and p(qo, z) are a Fourier transform pair, it 
follows from the convolution theorem that the corre- 
sponding disorder weight for p(qo, z) is 

(1) (2) (58) Wnl = Wnl Wnl • 

If, however, Pl and P2 are the actual densities of dis- 
tinguishable states, substitution of (40) into (57) shows 
that the probability density function for the combined 
disorder is given by 

c/u 27r 
p(¢p,z) = f f pl(qO - cp',z - z')p2(cp',z')d~p' dz', 

o o 
(59) 

where pl(qa, z) is extended by periodic repetition to 
arguments outside the interval on which it is defined, i.e. 
(59) is a circular convolution. When (59) is substituted 
into (45), the weight for the combined disorder is again 
given by (58). 

3.6.2. Small rotations. The effect of small rotations 
that are independent of axial translations is examined by 

and 

I [Vhk(R)/Aecell]lGot(Rhk)] 
X exp [ -47 r2 (R2c r?a t  + 2 2 z 

= l =  

0 l # m u ,  

(63) 

respectively. Therefore, random rotations eliminate 
Bragg reflections from all layer lines other than those 
for which l = ran. Diffuse intensity is excluded from 
layer lines for which l = mu provided there is no lattice 
disorder; otherwise, diffuse intensity appears on these 
layer lines, particularly at large values of R. 

3.6.4. Random axial translations. For random axial 
translations, pz(z) - 1/c on the interval 0 < z < c and 
substituting into (49) gives w~ = St0. Substituting this 
weight into (55) and (56) gives 

E IC.o(R)l 

ID(R) = x[1- exp(--47r2R2(72at)] l - - 0  

E IGn,(R)I l # 0 
(64) 
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and 

I [Phk(R)/A2ell] exp(-4~'2R2a~t)  

x E IGno(R)exp[in(¢hk + ~r/2)]l 2 
I & ( R )  = n l = 0 

o t # o ,  

(65) 

respectively. These equations are similar to those for 
random rotations. They show, however, that Bragg re- 
flections occur only on the equator, rather than on all the 
layer lines l = mu as in the case of random rotations. In 
addition, all Bessel orders satisfying the helix selection 
rule contribute to the Bragg reflections on the equator, 
rather than just the zero order. 

3.6.5. Random rotations and axial translations. Ran- 
domly rotated polymers are unlikely to be in register so 
that random rotations are likely to be accompanied by 
random axial translations. The diffracted intensities are 
then 

/ <N>8 [ ~  IG,~0(R)I 2 - IG00(R)l 2 

× exp(-47r2R2o-?~t)] I = 0 IF(R)  

<Y), ~ IG ,(R)I 2 l # 0 

(66) 
and 

[ 7 ) h k ( R ) / A 2 e l l ]  

iask,(R) = x exp(-47r2R2a~t)]Goo(R)l 2 I = 0 

o l # o ,  

(67) 

respectively, so that Bragg reflections occur only on the 
equator and their intensities are determined only by the 
zero-order Fourier-Bessel structure factor. 

3.6.6. Discrete rotations and translations. If the 
molecules at each lattice site can have one of M different 
positions (qoi, zi) relative to a reference molecule, with 
probabilities pi, then 

M 
p(~,z )  = E p~6(~ - ~ i , z  - zi) (68) 

i=1 

and the disorder weight is 

M 
w,,, = E Pi exp(i27rzil /c-  in~i ). (69) 

i=1 

The effect of this weight partly depends on the phase of 
the Gnt(R) to which it is applied. A relatively simple 
case to consider is that where a molecule is equally likely 
to adopt one of two positions, (q01, gl )  = (0, 0) and 

(~2, z2) = (qa', z'). The disorder weight is then 

1 { 1 -4- exp[i(2~rz'I/c - n~ ' ) ]} .  (70) Wnl = ~ 

Reference to (56) shows that the effect of this weight 
is to remove the contribution of the nth-order Bessel 
function to the Bragg intensity wherever (27rzq /c -  
n(p') _~ kTr for k an odd integer. At positions where 
this condition is satisfied and only one Bessel order is 
significant (in the vicinity of the meridian, for example), 
Bragg intensity is eliminated entirely. The contribution 
of Gnt (R) to the diffuse intensity tends to be suppressed 
where (27rz' l /c-n~')  ,'~ kTr, where k is an even integer, 
although this also depends on what lattice disorder is 
present. 

3.6.7. Screw disorder. Screw disorder consists of 
rotations of the molecules that are coupled to axial 
translations. This form of disorder was first proposed 
by Franklin & Klug (1956) as an explanation for the 
differences between diffraction patterns obtained from 
wet and dry fibers of tobacco mosaic virus. It has been 
suggested (Klug & Franklin, 1958; Marvin, Spencer, 
Wilkins & Hamilton, 1961; Arnott, 1980) that DNA 
fibers with diffraction patterns containing Bragg reflec- 
tions only near the center of the pattern may be 'screw 
disordered'. 

Screw rotations are most conveniently described by 
factorizing the joint probability density p(~, z) as 

p(~,z)  = p(z]~)p(~), (71) 

where p(zlqo ) denotes the distribution of z conditional 
on qa and specifies the coupling between the translations 
and rotations of the molecules. A pure screw disorder 
is specified by 

p(zl~ ) = 6[z - ~p(Ps/27r)], (72) 

where P8 is the pitch of the screw rotations. In practice, 
P~ is probably determined by the pattern of helical 
grooves and protuberances on the surface of each mol- 
ecule and the pattern of interlocking between adjacent 
molecules that they give rise to. One expects that the 
helix symmetry of these surface features would usually 
be the same as that of the molecule but this need not 
always be the case (Klug & Franklin, 1958). 

For small screw rotations, ~ is assigned a normal 
distribution with standard deviation a~. Equations (71), 
(72) and (45) show that 

wnz = exp[-o-2(n -1P~/c)2/2] .  (73) 

At any radius R, the weights of the Bragg and diffuse 
components depend on the relationship between n and I. 
Referring to (56) and (55) shows that the Bragg intensity 
receives the greatest contribution from the orders for 
which In - IP~/c[ is smallest and the contributions from 
all other orders decreases as In - lP~/c I increases. The 
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contributions of the different Bessel orders to the diffuse 
component increases with increasing In - lPs/cl. If the 
pitch P~ of the screw disorder is equal to the pitch P = 
c/v  of the molecular helix, the maximum contribution 
to the Bragg intensity comes from the Bessel orders 
n = I /v  and correspondingly this order makes no 
contribution to the diffuse intensity. Note that solutions 
to the selection rule for l < 0 are just those for 1 > 0 with 
the signs reversed so that the effect of screw disorder on 
layer lines with l < 0 is identical to that on the layer 
lines with l > 0. 

For random screw disorder, p(~o) = 1/27r for 0 < 
qa < 27r, so that 

271" 

w,~, = (1/2~-) f e x p [ - i ( n -  IPs/e)~o]dcp = 6n,,p,/c. 
0 

(74) 

Substitution of (74) into (55) and (56) gives the diffuse 
and Bragg intensities as 

//D(R) = (N)~ E IG ,(R)I = 
n 

x [1 - 6n,tP,/c exp(-47r2R2o2~t)] (75) 

and 

where a down molecule is generated from an up mole- 
cule by a 180 ° rotation about the axis defined by qo = qo0 
and z = z0. 

If one assumes that it is equally probable for a 
molecule to be pointing either up or down, the average 
intensity diffracted from a molecule is given by 

__  1 ( I F l ( R , ¢ ) 1 2 ) d  7[IF[P(R,¢)I  2 4- IFta°Wn(R,¢)12]. 

(79) 

When cylindrically averaged, (79) reduces to (43). This 
is also true if one of the other types of disorder discussed 
above is present. If it is assumed that this is the case, the 
average complex amplitude diffracted by a molecule is 

__  1 (Fl(R, ¢))d ~ E(wnt{anl(R) 4- G*I(R) 
n 

x exp[i(47rzol /c-  2ncP0)]} 

x exp[in(~b 4- ~r/2)]) (80) 

and it follows that 

(I(Ft(R, '¢))a12),,¢. = C 1%,121~{a.,(R)exp(fln,)}l 2, 
n 

(81) 
where N denotes the real part and 

tint = n~o - 27rzol/c. (82) 

IhSkt(R) = [7)hk(R)/Acen] exp(-47r2R2a2at) 

2 

x exp[in(¢hk + 7r/2)] , (76) 

respectively. In this case, only the Bessel order n = 
1P~/c contributes to the Bragg intensity and then only 
when n satisfies the helix selection rule. Other orders 
satisfying the selection rule contribute only to the diffuse 
intensity. If P~ = P,  then only the order n = I /v  
contributes to the Bragg reflections on layer line I. 
Previous statements that only the n = l Bessel order 
contributes to the Bragg reflections in the presence of 
screw disorder (Arnott, 1980) are true only if P~ = P 
and the helix is integral (v = 1). 

3.6.8. Directional disorder. Most biopolymers have 
an absolute direction or sense, and in a disordered crys- 
tallite may pack with random direction. If the complex 
amplitude diffracted by a reference 'up' molecule is 

F~P(R, ¢ ) =  y ] G . z ( R ) e x p [ i n ( ¢ + T r / 2 ) ] ,  (77) 
n 

then that diffracted by a 'down' molecule is 

F~a°Wn(R, ¢)  = ~ G*t(R)exp[ i (4rzo l /c  - 2n~oo) ] 
71, 

x exp[in(¢ 4- r /2 ) ] ,  (78) 

The diffuse intensity is obtained by substituting (43) 
and (81) into (55) as 

/tD(R) = (N)s E IG.(R)I  2 - (N)sWlattice(R, 1/c) 
n 

x E Iw,~tl2[~{ant(R) exp(iflnt)}] 2" (83) 
n 

Using (79) to calculate (IFhktl2)d and substituting the 
result into (27) gives the associated Bragg intensity as 

I~m(R ) = [TOhk(R) /A2el l lWlat t ice(R,  1/c) 

x 

exp(iflnt) }2 X exp[in(¢hk 4- 7 1 / 2 ) 1  (84) 

The effects of directional disorder are not confined to any 
particular region of reciprocal space and depend on the 
values of qo0 and zo and on the phase of the individual 
Fourier-Bessel structure factors. Only the contribution 
of Goo(R) to the Bragg intensity is unaffected. 

3.7. Disorientation and finite coherence length 

The layer-line intensities derived above are the in- 
tensities diffracted from an ideal specimen in which 
the constituent crystallites are perfectly oriented and 
are composed of structurally regular molecules of in- 
finite length. In real specimens, the coherence length 
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of the molecules (or structurally regular segments of 
molecules) that aggregate to form crystallites is finite, 
and they diffract bands of intensity rather than sharp 
layer lines. Crystallite disorientation smears these bands 
along arcs centered on the origin of reciprocal space 
(Holmes & Barrington Leigh, 1974). 

The distribution in the inclination of the crystallites 
can be described by an orientation density function N(a) 
such that N(a)dw is the fraction of the crystallites 
with their long axes contained in an element of solid 
angle dw at an inclination a to the fiber axis. The exact 
form of N(a) depends on the factors giving rise to 
disorientation and is usually not known (Fraser, MacRae, 
Miller & Rowlands, 1976). In many cases, however, 
angular reflection profiles calculated for a Gaussian 
orientation density function appear to match measured 
profiles reasonably accurately (Fraser, MacRae, Miller 
& Rowlands, 1976). Provided the variance, a0, of the 
angle of orientation is small, the intensity diffracted from 
a fiber is then given by (Holmes & Barrington Leigh, 
1974) 

[ (p ,a)  = E ] [p(p,o")exp[ - (a  - a')2/2a2o] 
! 0 

x io(sinasino"/a~)sina' da', (85) 

where (p, ¢, a) are spherical polar coordinates in re- 
ciprocal space; Ip(p,z) is the cylindrically averaged 
intensity diffracted in the absence of disorientation which 
is given by 

= E I I ( R ) ~ a x i a l ( Z  - z/c)] Iv(P, a) 
l I R=p  sin a ,  Z = p  cos a 

(86) 

where Paxi~a(Z) is the axial layer-line profile; and io(x) 
is given by 

io(x ) = exp(-x)Io(x ), (87) 

where Io(x) is the modified Bessel function of the 
second kind of order zero (Abramowitz & Stegun, 1972, 
p. 374). The layer-line profile P~ial(Z) is generally 
approximated as 

Paxial(Z) ~-~ exp(-71-2t2Z2), (88) 

where Ic is the coherence length (Stubbs, 1974). Layer- 
line intensities calculated using the expressions devel- 
oped in the preceding sections may be substituted into 
(86) and a two-dimensional diffraction pattern calculated 
numerically using (85). 

4. Simulations 

To examine the implications of the theory described 
above and to show specific examples of the relationships 
between disorder and the resulting diffraction effects, 

layer-line amplitudes were calculated for models of a 
polycrystalline fiber incorporating various kinds of dis- 
order using the equations derived in this paper. Results 
of simulations of diffracted intensities may be presented 
either as plots of the intensity It(R) on each layer line, 
or as continuous tone representations of the intensity 
I(p, a) on an entire diffraction pattern. We have found 
that the detailed features in the diffraction pattem tend 
to be less discernible in the latter representation, and so 
we use plots of layer-line amplitudes IJ2(R) to present 
most of the results in this section. Several representative 
two-dimensional simulated patterns are, however, shown 
at the end of this section. 

The molecule used for the calculations was the 
polynucleotide duplex poly(dA).poly(rU), which has 
111 helix symmetry and packs, on average, in a trigonal 
unit cell with a = b = 24.8 and c = 33.7 A (Arnott, 
Chandrasekaran, Millane & Park, 1986). Fourier-Bessel 
structure factors were calculated from the atomic 
coordinates using 'water-weighted' atomic scattering 
factors (Fraser, MacRae & Suzuki, 1978) and layer- 
line amplitudes calculated out to 3.0A resolution 
(Pm~ = 0.33 A- i ) .  The radius of the crystallites, re, 
was set to 200 A, and the temperature factor B -- 47r282 
to 6 A 2. 

Fig. 2 shows the diffracted amplitude calculated for 
an ideal polycrystalline fiber. Including lateral and axial 
disorder with Ol~t = a~i~l = 1 A (Fig. 3a) downweights 
the Bragg component of the diffracted amplitude with in- 
creasing R and Z. The Bragg reflections are substantially 
reduced on the higher layer lines and at the periphery 
of the diffraction pattern and there is a concomitant 
increase in the amplitude of the diffuse component. 
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Fig. 2. Calculated layer-line amplitudes for an ideal polycrystalline fiber. 
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Diffuse amplitude also appears close to the center of the 
pattern because al though the weight  it receives in this 
region is small the amplitude of the molecular  transform 
Ft(R, ¢) is large. Increasing both crier and tragic1 to 2 A  
contracts the region of  reciprocal space in which Bragg 
reflections occur as shown in Fig. 3(b). 

Diffraction from a specimen in which the molecules 
are subject only to normal ly  distributed rotations 

with cr~ = 10 ° is shown in Fig. 4(a). Rotational 
disorder reduces the contribution of the higher-order 
Four ier-Bessel  structure factors to the Bragg intensity 
on each layer  line and increases their contribution to 
the diffuse intensity. The Bragg reflections are most  
intense on layer lines with an index close to 0 and 11, 
since on these layer lines the helix selection rule has 
solutions that are close to zero. The maximum radius 
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Fig. 3. Calculated layer-line amplitudes for small lateral and axial 
displacements of the molecules with (a) trier -- traxi~l -- 1 A and 
(b) trl~ t = traxial = 2A. 
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of  the molecule is about 12A, so that, from (4), only 
G00(R) is significant on the equator for R ~< 0.14/~ -1. 
From (60), the weight w~ is zero for n = 0, so that the 
intensity of the four Bragg reflections on the equator are 
unaffected by rotation disorder, and continuous intensity 
is absent for R ~ 0.14A -x. This also occurs on layer 
line l = 11. 

The effect of adding small axial and lateral transla- 
tions with tr~i~l = trier = 1/k to the small rotations 
is shown in Fig. 4(b). The amplitudes of the Bragg 
reflections are further reduced with distance from the 
meridian and the equator. Near the center of the pattern, 
where rotation disorder has little or no effect, the effects 
of the lattice distortions dominate and there is increased 
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and lattice d isorder  with O'lat = traxial ---- 1 A, (c) small  screw disorder  with tr~ = 10 ° and no lattice disorder,  and (d) small  screw disorder  
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diffuse intensity relative to that produced by rotation 
disorder alone. 

For a molecule with high helix symmetry, the effects 
o f  rotations are more pronounced at large values of 
/7, where high-order G,~t(R) terms contribute to the 
diffracted intensity, than at small values of /7 ,  where 
only low-order terms contribute. However, the Bragg 
reflections that occur at these radii are those most 
affected by lateral disorder. When there is both lattice 
disorder and rotational disorder, the effects of rotation 
are mainly evident on those layer lines for which the 
main contribution to the diffracted amplitude comes 
from Gnt (/7) terms of moderate order, provided that the 
Bragg reflections have not already been removed by axial 
disorder. For example, comparing the pattern for small 
rotations and lattice disorder (Fig. 4b) with that for lattice 
distortions only (Fig. 3a) shows that the effects of small 
rotations are most apparent on layer lines l = 3, 4 and 
5 where the Bragg reflections are downweighted more 
than they are for lattice distortions only. The rotations 
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Fig. 6. Probability density functions p(cp, z) for the molecular positions, 
for axial translations with a~×iai = 1/~, and (a) random screw 
disorder, (b) small screw rotations with cr~ ---- 10 °, and (c) small 
rotations with a~ = 10 ° . The first contour level (broken line) is at 
0.1 and thg' increment between levels is 0.1. 

also remove the weak reflections at large R that appear 
on layer lines l = 0, 1 and 2 of the pattern for lattice 
distortions only. 

The effect of screw disorder depends on the rela- 
tionship between the pitch of the screw and the pitch 
of the molecular helix. We assume here that these 
two pitches are equal. The effects of random screw 
disorder are shown in Fig. 5(a). On each layer line, 
only the Fourier-Bessel structure factors of order n = 1 
contribute to the Bragg intensity. On layer lines 1 < 5, 
this Bessel order is dominant at small values of R, so 
that the Bragg reflections in the low-resolution region 
of the diffraction pattern are not affected. On layer lines 
1 > 6, the Bessel order n that is significant for R small 
is not equal to l and only diffuse intensity appears in 
this region. Bragg reflections appear further from the 
meridian where the structure factor of order n -- 1 
becomes significant. 

Fiber diffraction patterns with Bragg reflections re- 
stricted to the low-resolution region have often been 
attributed to screw disorder, on the basis of the oversim- 
plified argument that only the Fourier-Bessel structure 
factors of order n -- l contribute at low resolution and 
produce Bragg reflections only in this region (Amott & 
Bond, 1973; Miller & Parry, 1974; Amott, 1980). This 
argument overlooks the fact that these Fourier-Bessel 
structure factors continue to be significant at larger 
values of R, as is evident by the presence of Bragg 
reflections at the edges of the calculated pattern shown 
in Fig. 5(a}. Only when lateral displacements of the 
molecules are included are the Bragg reflections truly re- 
stricted to the low-resolution region. Axial displacements 
that are not coupled to the rotations of the molecules 
remove Bragg reflections on the upper layer lines. This 
is illustrated in Fig. 5(b) for lattice distortions with 
~ l a t  - -  O 'axia l  = 1 / ~ .  

Fig. 5(c) shows layer-line amplitudes for small screw 
rotations with a~ = 10 °. The pattern is similar to that 
for random screw disorder (Fig. 5a) except for some 
weak Bragg reflections close to the meridian on the upper 
layer lines and a strong meridional Bragg reflection on 
the l lth layer line. When lattice distortions are added 
to the model with small screw disorder, the diffraction 
pattern (Fig. 5d) is essentially identical to that for a 
random screw disorder with lattice distortions (Fig. 5b). 
The pattern is also similar to that for small rotations and 
lattice distortions (Fig. 4b) except that, in latter case, 
weak Bragg reflections appear on the upper layer lines. 

The reason that the diffraction patterns are similar in 
these three cases (Figs. 4b, 5b and 5d) can be understood 
by examining the probability density functions p(qo, z) 
that describe the distribution of the molecular positions. 
Fig. 6 shows contour plots of p(~, z) for (a) random 
screw disorder, (b) small screw rotations with cr~ = 10 ° 
and (c) small rotations with cry, = 10 °, all in conjunction 
with independent axial translations with O'axial - -  1/ft. 
Although these three density functions are different, 
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there are considerable similarities between them. The 
density function for a random screw is maximum and 
uniform along the path z = Pqo/27r. For small screw 
rotations, the probability density is maximum at the 
points (qo, z) = (0,0) and (27r /u ,c /~z)  and decreases 
to about half its maximum value midway between the 
maxima. Otherwise, it is significant only in the region 
where the density for the random screw is significant. 
It is the helical nature of the molecule and the resulting 
aliasing of the distribution of molecular positions for 
small screw disorder that produces the similarity. Since 
the disorder weights, which determine the distribution of 
Bragg and continuous intensity on the diffraction pattern, 
are themselves uniquely determined by p(~p, z), similar- 
ities in p(cp, z) necessarily translate to similarities in the 
diffraction patterns. This is the source of the similarity 
between Figs. 5(b) and (d). The small differences in the 
diffraction patterns are confined to the upper layer lines 
and are removed if lateral disorder is present (Figs. 5b 
and d). Therefore, when lattice disorder is significant, it 
may be difficult to distinguish between the presence of 
small screw disorder and random screw disorder. 

Overall, the probability density function for small 
rotations and axial translations (Fig. 6c) is quite similar 
to that for small screw rotations (Fig. 6b). The two 
density functions have maxima in the same positions 
although the density for small rotations and translations 
is not concentrated in the vicinity of the path connecting 
the maxima. The resulting diffraction patterns (Figs. 
4b and 5d) are therefore quite similar, but there are 
noticeable differences. 

Discrete rotations and axial shifts of the molecules 
can produce a wide variety of effects on the diffracted 
intensities, depending on the relative positions and the 
helix symmetry of the molecule. These effects are not 
confined to any particular region of a diffraction pattern. 
Fig. 7(a) shows layer-line amplitudes calculated for 
two equally probable positions (~i, zi) = (0,0) and 
( - 9 0  °, 0). The effect is quite striking, with exclusively 
continuous diffraction near the meridian on layer lines 2 
and 9. Reference to (70) shows that this is because the 
contribution of the Bessel orders Inl = 2 to the Bragg 
intensity on layer lines I -- 2 and l = 9 is completely 
eliminated, while the contribution of the Bessel orders 
Inl = 9 are unaffected. Lattice disorder is not included 
in this calculation but, even if it were, the effects of the 
discrete rotation would remain evident on layer line 2. 
The sensitivity of the diffraction pattern to the positions 
of the molecules is illustrated in Fig. 7(b), which is 
calculated for (~Pi, zi) = (0, 0) and (30 °, 0.04c). The 
upper layer lines are now dominated by continuous 
intensity and the disorder has little effect on the lower 
layer lines. This is quite different to the case shown in 
Fig. 7(a) and, in fact, is rather similar to what would be 
obtained for small axial shifts. 

The effects of direction disorder also vary greatly 
depending on the location of the rotation axis relating 

up and down molecules. Fig. 8(a) shows layer-line 
amplitudes for direction disorder with the rotation axis 
at (qo0, z0) = (165°,0.015c). Comparison of this with 
Fig. 2 shows that the directional disorder has intro- 
duced considerable diffuse intensity into the pattern, and 
virtually eliminated the Bragg reflections in the region 

_ /~k - I  
/7 "-' 0.2 on layer lines 2 through 4. Changing the 
rotation axis to (~o0, z0) = (60 °, 0.03c) gives the pattern 
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Fig. 7. Calculated layer-line amplitudes for molecules with discrete 
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and (30 °, 0.04c). 
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shown in Fig. 8(b). This is rather similar, overall, to Fig. 
8(a), but there are some notable differences; suppression 

-1  
of the Bragg reflections is greater at R _~ 0.05/~ on 
layer lines 1 and 2 and layer line 2 is virtually devoid 
of Bragg intensity. 

Single quadrants of full diffraction patterns calculated 
for an ideal polycrystalline fiber, a fiber with random 
screw disorder only and a fiber with random screw 
disorder and lattice disorder are shown in Fig. 9. The 
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Fig. 8. Calculated layer-line amplitudes for direction disorder with 
(a) (~o0, z0) = (165 °, 0.015c), and (b) (qoo, z0) = (60 °, 0.03c). 

patterns correspond to a disorientation angle s0 = 
2 ° and a coherence length lc -- 250A,. The pattern 
for a fiber with no disorder (Fig. 9a) corresponds to 
the layer-line intensities shown in Fig. 2 and shows 
only Bragg reflections throughout. The patterns from 
screw disordered specimens (Figs. 9b, c) correspond 
to the layer-line intensities shown in Figs. 5(a) and 
(b), respectively. On each pattern, the effect of finite 
coherence length is most evident close to the origin, 
where the layer lines are smeared primarily parallel 
to the Z axis. Further from the origin, the spread of 
intensity is dominated by the angular arcing produced 
by disorientation. Bragg reflections appear as sharp 
streaks while continuous intensity appears as diffuse 
bands centered on the layer lines, which broaden with 
increasing distance from the meridian. 

The effect of screw disorder in suppressing Bragg 
intensity on the upper lines and replacing it with con- 
tinuous intensity can be seen in Fig. 9(b). As described 
above, random screw disorder by itself does not com- 
pletely remove Bragg reflections from the periphery of 
the pattern, and sharp reflections persist to the edge of 
the pattern in Fig. 9(b). Including lattice disorder with 
screw disorder removes the outlying Bragg reflections 
(Fig. 9c). Also evident in Fig. 9(c), close to the meridian 
on lower layer lines, is continuous intensity introduced 
by lattice disorder. This intensity is absent from the 
diffraction pattern for a specimen with random screw 
disorder only (Fig. 9b). 

5. Discussion 

The theory presented here allows calculations of con- 
tinuous layer-line intensities, which incorporate both 
Bragg and diffuse components, diffracted by disordered 
polycrystalline fibers. The treatment is quite general 
in that it includes the effects of finite crystallite size, 
lattice distortions and cylindrical averaging, along with 
more familiar disorder that we describe in terms of 
substitution disorder. Simulations using this theory allow 
the effects of the various components of disorder on 
diffraction patterns to be characterized rather easily 
and precisely. Whole diffraction patterns are readily 
calculated from the layer-line intensities using standard 
methods to account for the effects of finite coherence 
length and disorientation. 

For diffraction patterns characterized by Bragg reflec- 
tions that are restricted to the center of a diffraction 
pattern and continuous diffraction elsewhere, our results 
show that the specimen must contain significant lattice 
distortions, both lateral and axial shifts of the molecules. 
Rotational or screw disorder are not, by themselves, 
sufficient to produce these diffraction effects. 

The effects of lattice distortions are rather easy to 
interpret as they suppress Bragg reflections with increas- 
ing R and Z. Rotational and screw disorders have rather 
different effects. In the absence of lattice disorder, Bragg" 



788 DIFFRACTION BY DISORDERED POLYCRYSTALLINE FIBERS 

reflections due to high-order Bessel terms are suppressed 
by rotational disorder. Bragg reflections that are close 
to the meridian therefore tend to remain unaffected. On 
the other hand, for screw disorder (for integral helices 
and the pitch of the screw disorder equal to the mol- 
ecular pitch), the contributions to the Bragg reflections 
by Bessel terms whose orders increase with layer-line 
number tend to remain unaffected. On the higher layer 
lines, then, Bragg reflections persist further from the 
meridian. In all cases, however, Bragg reflections persist 
at high resolution, as shown in the simulations, because 
low-order, as well as high-order, Bessel functions have 
significant amplitude at high resolution. Differences be- 
tween rotational and screw disorder tend to be masked 

by the presence of lattice disorder. Diffraction patterns 
that contain Bragg and diffuse components throughout 
reciprocal space are likely to be due to the presence of 
discrete or directional disorder without lattice distortions. 

The probability density function p(qo, z) that describes 
the distribution of molecular positions is very useful in 
analyzing the differences or similarities between differ- 
ent kinds of disorder. Because of the helix symmetry of 
the molecule and the resulting aliasing of the distribu- 
tions, different combinations of disorders can result in 
distributions of positions that are almost identical. They 
must therefore produce almost identical diffraction pat- 
terns. This is particularly useful for understanding what 
is sometimes an apparent lack of uniqueness; i.e. a par- 
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Fig. 9. Calcula ted diffract ion patterns for (a) an ideal polycrys ta l l ine  
fiber, (b) a fiber with random screw disorder,  (c) a fiber with random 
screw d isorder  and lattice d isorder  with trla t = traxia I = 1 A. In each 
case, tr0 = 2 ° and lc = 2 5 0 A .  
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ticular diffraction pattern being apparently interpretable 
in terms of  different kinds of disorder. For the example 
shown in Fig. 6, three kinds of  disorder lead to rather 
similar diffraction patterns because the distributions of  
positions of  the molecules are rather similar. A more 
extreme, although not necessarily unrealistic, example 
is shown in Fig. 10 where O'axia I has been increased 
to 2 A. The distributions of  molecular  positions for the 
three different kinds of  disorder are now very similar 
and would lead to indistinguishable diffraction patterns. 
This is not because of  any inherent non-uniqueness but 
because the different descriptions of  the disorder are, in 
fact, almost equivalent.. However,  it should be pointed 
out that, as a result of  the cylindrical averaging of the 
diffraction pattern, it is possible that quite different forms 
of  disorder may lead to similar diffraction patterns. 

Including the effects of  disorder in the analysis of  
fiber diffraction patterns of  this kind is important for ac- 
curate structure determination. The theory and methods 
presented here offer the possibility for quantifying the 
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Fig. 10. Probability density functions p(qo, z) for the molecular positions, 
for axial translations with traxial = 2 A and (a) random screw 
disorder, (b) small screw rotations with t r ¢ =  10 °, and (c) small 
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disorder present in particular specimens and for in- 
cluding the effects in structure determination. Detailed 
comparisons of  diffraction patterns calculated using the 
methods described here with experimentally obtained 
diffraction patterns are described in a subsequent paper 
(Stroud & Millane, 1995a). 

There are a number of  ways in which the model of  
diffraction by disordered fibers described here may be 
extended. First, the effects of  disorder within molecules 
themselves could be incorporated. This kind of  disorder 
has already been considered by itself (Barakat, 1987; 
Worthington & Elliot, 1989; Inouye, 1994) and could 
be included in our analysis. The effect of  this would 
be to broaden the layer lines, modify their intensities 
and introduce diffuse intensity b e t w e e n  the layer lines. 
However,  distortions within the molecules are likely to 
be smaller and their effects on diffraction patterns less 
significant than the forms of  disorder considered here. 
Second, the model described here could be extended 
to allow correlations between distortions at different 
lattice sites. Correlated lattice distortions cause Bragg 
reflections to broaden with increasing resolution and 
prevent the separation of  intensity into well defined 
Bragg and continuous components  (Welberry, 1985). A 
model that allows calculations of cylindrically averaged 
diffraction from polycrystal l ine fibers incorporating cor- 
related lattice disorder is being developed (Stroud, 1993; 
Stroud & Millane, 1995b). 
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Abstract  

X-ray diffraction pat tems from oriented polycrystal l ine 
fibers of  some biopolymers  show that the molecules are 
disordered within the microcrystalli tes.  Quant i fying the 
disorder in such specimens is a necessary step for the 
use of their diffraction patterns for accurate structure 
determination. Theory and algorithms for calculating 
diffraction patterns from such fibers have recently been 
described [Stroud & Mil lane (1995). Acta  Cryst. AS1, 
000-000].  Here the application of these methods to 
determining the kind and degree of disorder in two 
polynucleotide fibers is described. The more ordered 
system shows random screw disorder accompanied by 
small lattice distortions, and the more disordered system 
shows larger lattice distortions and significant rotational 
disorder. These results show the potential  of  these meth- 
ods for determining disorder in polycrystal l ine fibers; 
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uniqueness of the solutions and implications for structure 
determination are discussed. 

1. Introduction 

The molecular  and crystal structures of many  of biopoly- 
mers and rod-like macromolecular  assemblies have been 
determined by X-ray fiber diffraction analysis  (Amott ,  
1980; Millane,  1988). In most  cases, diffraction data 
from polycrys ta l l ine  specimens,  which are made up 
of small crystallites that are randomly rotated relative 
to each other, have been used for structural analysis 
(Arnott, 1980; Millane,  1988). The diffraction patterns 
from these specimens are equivalent  to the cylindrical  
projection of the pattern from a single crystal and 
are used to determine full crystal structures. In other 
cases, structure determination has used diffraction data 
from non-crystal l ine fibers, in which the molecules are 
merely oriented but not otherwise organized in the speci- 
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